17 research outputs found

    DIANet: Dense-and-Implicit Attention Network

    Full text link
    Attention networks have successfully boosted the performance in various vision problems. Previous works lay emphasis on designing a new attention module and individually plug them into the networks. Our paper proposes a novel-and-simple framework that shares an attention module throughout different network layers to encourage the integration of layer-wise information and this parameter-sharing module is referred as Dense-and-Implicit-Attention (DIA) unit. Many choices of modules can be used in the DIA unit. Since Long Short Term Memory (LSTM) has a capacity of capturing long-distance dependency, we focus on the case when the DIA unit is the modified LSTM (refer as DIA-LSTM). Experiments on benchmark datasets show that the DIA-LSTM unit is capable of emphasizing layer-wise feature interrelation and leads to significant improvement of image classification accuracy. We further empirically show that the DIA-LSTM has a strong regularization ability on stabilizing the training of deep networks by the experiments with the removal of skip connections or Batch Normalization in the whole residual network. The code is released at https://github.com/gbup-group/DIANet

    Finite Expression Method for Solving High-Dimensional Partial Differential Equations

    Full text link
    Designing efficient and accurate numerical solvers for high-dimensional partial differential equations (PDEs) remains a challenging and important topic in computational science and engineering, mainly due to the "curse of dimensionality" in designing numerical schemes that scale in dimension. This paper introduces a new methodology that seeks an approximate PDE solution in the space of functions with finitely many analytic expressions and, hence, this methodology is named the finite expression method (FEX). It is proved in approximation theory that FEX can avoid the curse of dimensionality. As a proof of concept, a deep reinforcement learning method is proposed to implement FEX for various high-dimensional PDEs in different dimensions, achieving high and even machine accuracy with a memory complexity polynomial in dimension and an amenable time complexity. An approximate solution with finite analytic expressions also provides interpretable insights into the ground truth PDE solution, which can further help to advance the understanding of physical systems and design postprocessing techniques for a refined solution

    Instance Enhancement Batch Normalization: an Adaptive Regulator of Batch Noise

    Full text link
    Batch Normalization (BN)(Ioffe and Szegedy 2015) normalizes the features of an input image via statistics of a batch of images and hence BN will bring the noise to the gradient of the training loss. Previous works indicate that the noise is important for the optimization and generalization of deep neural networks, but too much noise will harm the performance of networks. In our paper, we offer a new point of view that self-attention mechanism can help to regulate the noise by enhancing instance-specific information to obtain a better regularization effect. Therefore, we propose an attention-based BN called Instance Enhancement Batch Normalization (IEBN) that recalibrates the information of each channel by a simple linear transformation. IEBN has a good capacity of regulating noise and stabilizing network training to improve generalization even in the presence of two kinds of noise attacks during training. Finally, IEBN outperforms BN with only a light parameter increment in image classification tasks for different network structures and benchmark datasets

    On Fast Simulation of Dynamical System with Neural Vector Enhanced Numerical Solver

    Full text link
    The large-scale simulation of dynamical systems is critical in numerous scientific and engineering disciplines. However, traditional numerical solvers are limited by the choice of step sizes when estimating integration, resulting in a trade-off between accuracy and computational efficiency. To address this challenge, we introduce a deep learning-based corrector called Neural Vector (NeurVec), which can compensate for integration errors and enable larger time step sizes in simulations. Our extensive experiments on a variety of complex dynamical system benchmarks demonstrate that NeurVec exhibits remarkable generalization capability on a continuous phase space, even when trained using limited and discrete data. NeurVec significantly accelerates traditional solvers, achieving speeds tens to hundreds of times faster while maintaining high levels of accuracy and stability. Moreover, NeurVec's simple-yet-effective design, combined with its ease of implementation, has the potential to establish a new paradigm for fast-solving differential equations based on deep learning.Comment: Accepted by Scientific Repor

    Optimizing Shot Assignment in Variational Quantum Eigensolver Measurement

    Full text link
    The rapid progress in quantum computing has opened up new possibilities for tackling complex scientific problems. Variational quantum eigensolver (VQE) holds the potential to solve quantum chemistry problems and achieve quantum advantages. However, the measurement step within the VQE framework presents challenges. It can introduce noise and errors while estimating the objective function with a limited measurement budget. Such error can slow down or prevent the convergence of VQE. To reduce measurement error, many repeated measurements are needed to average out the noise in the objective function. By consolidating Hamiltonian terms into cliques, simultaneous measurements can be performed, reducing the overall measurement shot count. However, limited prior knowledge of each clique, such as noise level of measurement, poses a challenge. This work introduces two shot assignment strategies based on estimating the standard deviation of measurements to improve the convergence of VQE and reduce the required number of shots. These strategies specifically target two distinct scenarios: overallocated and underallocated shots. The efficacy of the optimized shot assignment strategy is demonstrated through numerical experiments conducted on a H2_2 molecule. This research contributes to the advancement of VQE as a practical tool for solving quantum chemistry problems, paving the way for future applications in complex scientific simulations on quantum computers

    Solving PDEs on Unknown Manifolds with Machine Learning

    Full text link
    This paper proposes a mesh-free computational framework and machine learning theory for solving elliptic PDEs on unknown manifolds, identified with point clouds, based on diffusion maps (DM) and deep learning. The PDE solver is formulated as a supervised learning task to solve a least-squares regression problem that imposes an algebraic equation approximating a PDE (and boundary conditions if applicable). This algebraic equation involves a graph-Laplacian type matrix obtained via DM asymptotic expansion, which is a consistent estimator of second-order elliptic differential operators. The resulting numerical method is to solve a highly non-convex empirical risk minimization problem subjected to a solution from a hypothesis space of neural-network type functions. In a well-posed elliptic PDE setting, when the hypothesis space consists of feedforward neural networks with either infinite width or depth, we show that the global minimizer of the empirical loss function is a consistent solution in the limit of large training data. When the hypothesis space is a two-layer neural network, we show that for a sufficiently large width, the gradient descent method can identify a global minimizer of the empirical loss function. Supporting numerical examples demonstrate the convergence of the solutions and the effectiveness of the proposed solver in avoiding numerical issues that hampers the traditional approach when a large data set becomes available, e.g., large matrix inversion

    Probing reaction channels via reinforcement learning

    Full text link
    We propose a reinforcement learning based method to identify important configurations that connect reactant and product states along chemical reaction paths. By shooting multiple trajectories from these configurations, we can generate an ensemble of configurations that concentrate on the transition path ensemble. This configuration ensemble can be effectively employed in a neural network-based partial differential equation solver to obtain an approximation solution of a restricted Backward Kolmogorov equation, even when the dimension of the problem is very high. The resulting solution, known as the committor function, encodes mechanistic information for the reaction and can in turn be used to evaluate reaction rates
    corecore